Monitoring and Evaluation

An Overview of Strategies and Preliminary Findings for the HSI-STEM Bridges Across Eastern Queens Project

Kate Winter, PhD
January 2018
Overview

• Logic Model
• Assessment Strategies
• Data Collection
 • Implementation and outputs
 • Outcomes
• Preliminary Findings
• Wrap up
Logic Model

Increased Hispanic and low-income students graduating with STEM baccalaureate degrees
- Improved academic outcomes in landing (+.5 GPA) and gateway (+.5 GPA) courses
- Improved semester to semester retention in STEM (+4%)
- Increased number of STEM majors (+3%), particularly among Hispanic and low-income students (+7%)
- Decreased time to graduation for STEM majors (-1 term)
- Increased rate of 4-year graduation for STEM majors (+2%)
- Decreased “wasted” credits from STEM QCC transfers (- credits), and time to graduation (-2 terms)
- Increased number of placement tests (4)

Students are exposed to improved courses, peer support/mentoring, and new/updated articulation agreements (for transfers from QCC)

Faculty prepared to teach STEM landing courses

STEM landing courses redesigned to facilitate learning

Instructors/courses using peer mentors and discussion leaders

Students prepared to serve as mentors and discussion leaders

IMPROVE ACCESS
Redesign STEM landing courses through structured observations, faculty development, and curricular reform

IMPROVE LEARNING
Develop learning collectives (peer-led instruction and mentoring)

BRIDGE
Build and sustain cross-campus groups of faculty and administrators dedicated to improving programs, policies, and practices in STEM education

Monitoring and Direction from Leadership Team
Assessment of Implementation and Outputs

• Timing: The activity was implemented within a time frame that allowed most target recipients to access it on time or with only minor delays. The activity was not interrupted and achieved its intended duration.

• Scope: The activity was implemented exclusively to those randomly assigned to receive the treatment and a majority were exposed to the activity.

• Details: The activity was implemented as proposed, or with justified changes.
Assessment of Outcomes

• Procedures meet What Works Clearinghouse group design standards without reservations

• Cluster-level (sections) RCT (randomized controlled trial) experiment

• ITT Protocol (Intention to treat, or “as randomly assigned,” not as treated - condition compliance counts!)

• Scores of prior academic achievement and socioeconomic status are covariates in analysis

• Hierarchical (nested) analysis model to explore impact of treatment on students within sections
Outcomes to Explore

- Academic outcomes in STEM landing courses (final course GPAs)
- Academic outcomes in STEM gateway courses (final course GPAs)
- Semester-to-semester retention in STEM (percent returning the term after treatment)
- Number of STEM majors (number and percent of majors declared)
- Number of Hispanic & low-income STEM majors (number and percent of majors declared)
- Time to graduation for STEM majors (time to degree, in terms/semesters)
- Four-year graduation for STEM majors (percent STEM students graduating within four years)
- “Wasted” credits for STEM transfers from QCC (number of credits accumulated at graduation)
- Time to graduation for STEM transfers from QCC (time to degree, in terms/semesters)
- Number of articulation agreements for QCC-to-QC STEM programs (number of programs with articulation agreements)
- Number of placement tests for STEM developed and placed into use (number of discipline-specific tests)
- Coverage of performance goals, methods, and rubrics for assessing learning and progress developed for STEM programs (percent of programs with assessment measures)
Data Collection: Implementation and Outputs

- Survey (Google Form) of treatment faculty regarding their course redesign activities
- Project coordinators monitor implementation and provide data
- Sheet in gDrive of all randomly assigned treatment and control sections, with details of what form treatment implementation took
- Faculty pre and post surveys regarding summer workshops and faculty development opportunities
- Administrative documents from the project about faculty and student participants (peer mentoring sessions, workshop attendance, etc.)
- Classroom observations
Data Collection: Outcomes

• Official data come directly from Dr. Cheryl Littman; Acting Dean, Office of Institutional Effectiveness (OIE)

• Testing and refining data solicitation and provision processes
 • KWE provides OIE a list of all study courses (txt and cntrl) each term
 • OIE adds all study IDs for all students in study course sections to a table
 • KWE receives back the list of all sections with headcounts by section
 • KWE receives data for all study sections with student study IDs, demographics and baseline covariates, and course GPA
 • KWE receives data for all students in the study table each term for STEM Gateway course GPA, retention, graduation, time to graduation, and credits at graduation (as applicable)
Preliminary Findings: Implementation

• High rate of sections being “out of compliance” with their random assignment (10 of 19 in Chemistry and 4 of 22 in Biology)

• Many “course redesign” treatments being implemented as peer mentors, only

• Learning Collectives appear to have been merged into “course redesigns”

• Implementation data collection needs refinement

• Implementation fidelity needs improvement

• We've all learned a lot to support these improvements!
Preliminary Findings: Outcomes

- Unofficial data from ONE class of ONE participating department
- Ignores random assignment (data lumped by instructor with 2 instructors each having one section out of compliance)
- Does not use required baseline covariates

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>p value</th>
<th>ES*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Listwise n=138</td>
<td>Listwise n=155</td>
<td>Treatment</td>
<td>Control</td>
</tr>
<tr>
<td>Score 1 (of 60)</td>
<td>36</td>
<td>33</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Score 2 (of 60)</td>
<td>35</td>
<td>31</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>Total Lecture Grade (of 60)</td>
<td>33</td>
<td>29</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Lab Grade (of 40)</td>
<td>26</td>
<td>20</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>Total Grade</td>
<td>59</td>
<td>49</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Withdrew</td>
<td>18%</td>
<td>34%</td>
<td>0.39</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Effect size is calculated using Hedge's g for continuous variables and Cox's Index for dichotomous variables
Comparison of Outcomes by ITT Analysis

<table>
<thead>
<tr>
<th></th>
<th>Mean Treatment</th>
<th>SD Treatment</th>
<th>Mean Control</th>
<th>SD Control</th>
<th>p value</th>
<th>ES*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Listwise n=139</td>
<td></td>
<td>Listwise n=155</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score 1 (of 60)</td>
<td>36</td>
<td>13</td>
<td>33</td>
<td>13</td>
<td>0.114</td>
<td>0.18</td>
</tr>
<tr>
<td>Score 2 (of 60)</td>
<td>35</td>
<td>16</td>
<td>31</td>
<td>19</td>
<td>0.041</td>
<td>0.24</td>
</tr>
<tr>
<td>Total Lecture Grade</td>
<td>33</td>
<td>14</td>
<td>29</td>
<td>16</td>
<td>0.005</td>
<td>0.33</td>
</tr>
<tr>
<td>(of 60)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Grade (of 40)</td>
<td>26</td>
<td>11</td>
<td>20</td>
<td>15</td>
<td>0.015</td>
<td>0.28</td>
</tr>
<tr>
<td>Total Grade</td>
<td>59</td>
<td>25</td>
<td>49</td>
<td>30</td>
<td>0.001</td>
<td>0.42</td>
</tr>
<tr>
<td>Withdrew</td>
<td>0.18</td>
<td>0.39</td>
<td>0.34</td>
<td>0.48</td>
<td>0.002</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Effect size is calculated using Hedge’s g for continuous variables and Cox’s Index for dichotomous variables

<table>
<thead>
<tr>
<th></th>
<th>Mean Treatment</th>
<th>SD Treatment</th>
<th>Mean Control</th>
<th>SD Control</th>
<th>p value</th>
<th>ES*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Listwise n=139</td>
<td></td>
<td>Listwise n=135</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score 1 (of 60)</td>
<td>34</td>
<td>13</td>
<td>34</td>
<td>13</td>
<td>0.820</td>
<td>0.30</td>
</tr>
<tr>
<td>Score 2 (of 60)</td>
<td>33</td>
<td>17</td>
<td>32</td>
<td>18</td>
<td>0.582</td>
<td>0.22</td>
</tr>
<tr>
<td>Total Lecture Grade</td>
<td>31</td>
<td>15</td>
<td>30</td>
<td>16</td>
<td>0.410</td>
<td>0.25</td>
</tr>
<tr>
<td>(of 60)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Grade (of 40)</td>
<td>24</td>
<td>13</td>
<td>20</td>
<td>15</td>
<td>0.029</td>
<td>0.29</td>
</tr>
<tr>
<td>Total Grade</td>
<td>55</td>
<td>27</td>
<td>50</td>
<td>30</td>
<td>0.133</td>
<td>0.14</td>
</tr>
<tr>
<td>Withdrew</td>
<td>22%</td>
<td>.42</td>
<td>34%</td>
<td>.48</td>
<td>0.133</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Effect size is calculated using Hedge’s g for continuous variables and Cox’s Index for dichotomous variables
Summary

• Many aspects of implementation are proceeding as proposed
• We need to ensure everyone joining the project understands the RCT structure and the intervention details (i.e., course redesigns)
• We need to ensure everyone complies with the RCT structure
• I need to pin down some data collection details to ensure timely and accurate data, so that I may better monitor efforts and offer timely formative feedback
• I am very excited about the level of involvement and enthusiasm I have perceived from project staff, faculty, peer mentors, and other stakeholders
Questions or Comments?
kate@katewinterevaluation.com
703-574-3746